Divergence of Morse geodesics
نویسندگان
چکیده
منابع مشابه
K-theory of Morse geodesics
We develop the K-theory of a C∗–algebra Oλ which represents the leaf space of measured foliations studied by Novikov, Masur, Thurston and Veech. The K-theory construction is based on the coding of geodesic lines due to Koebe and Morse. This method allows to calculate the range of Elliott group (K0, K + 0 , [1]) of Oλ, to establish a condition of strict ergodicity of the interval exchange transf...
متن کاملA Morse complex for Lorentzian geodesics
We prove the Morse relations for all geodesics connecting two non-conjugate points on a class of globally hyperbolic Lorentzian manifolds. We overcome the difficulties coming from the fact that the Morse index of every geodesic is infinite, and from the lack of the Palais-Smale condition, by using the Morse complex approach. Introduction Let M be a smooth connected manifold without boundary of ...
متن کاملMorse Theory of Causal Geodesics in a Stationary Spacetime via Morse Theory of Geodesics of a Finsler Metric
We show that the index of a lightlike geodesic in a conformally standard stationary spacetime (M0 × R, g) is equal to the index of its spatial projection as a geodesic of a Finsler metric F on M0 associated to (M0×R, g). Moreover we obtain the Morse relations of lightlike geodesics connecting a point p to a curve γ(s) = (q0, s) by using Morse theory on the Finsler manifold (M0, F ). To this end...
متن کاملMorse Theory , Floer Theory and Closed Geodesics of S
We construct Bott-type Floer homology groups for the sym-plectic manifold (T S 1 ; can) and Bott-type Morse homology groups for the energy functional on the loop space of S 1. Both objects turn out to be isomorpic to the singular homology of the loop space of S 1. So far our objects depend on all choices involved, but the above isomorphism suggests further investigation to show independence of ...
متن کاملMorse Theory for Riemannian Geodesics without Nondegeneracy Assumptions
Let f ∈ C(M,R) be a functional defined on a Hilbert manifold M. It is well known that if f is a Morse functional (i.e. every critical point of f is nondegenerate) and f satisfies the so called Palais–Smale condition, the Morse relations hold. More precisely, let x ∈ M be a critical point of f , and m(x, f) denote the Morse index at x (i.e. the maximal dimension of the subspaces of TxM where the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Geometriae Dedicata
سال: 2015
ISSN: 0046-5755,1572-9168
DOI: 10.1007/s10711-015-0107-3